DATA & IMAGE MODELS

CS 448B | Fall 2023

MANEESH AGRAWALA

1

The big picture

task

questions, goals, assumptions

data

physical data type conceptual data type

domain

metadata semantics conventions

mapping

visual encoding

processing algorithms

image

graphical marks visual attrs/channels

Learning Objectives

TODAY

- 1. Identify *properties* of data and images
- 2. Decide how to encode data using visual attributes/channels
- 3. Define concepts of *expressiveness* and *effectiveness*
- 4. Develop *automated chart design* algorithm

8

DATA

q

DATA TABLE

Halloween Candy Power Ranking Dataset

1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
2	100 Grand	1	0	1	0	0	1	0	1	0	.73199999	.86000001	66.971725
3	3 Musketeers	1	0	0	0	1	0	0	1	0	.60399997	.51099998	67.602936
4	One dime	0	0	0	0	0	0	0	0	0	.011	.116	32.261086
5	One quarter	0	0	0	0	0	0	0	0	0	.011	.51099998	46.116505
6	Air Heads	0	1	0	0	0	0	0	0	0	.90600002	.51099998	52.341465
7	Almond Joy	1	0	0	1	0	0	0	1	0	.465	.76700002	50.347546
8	Baby Ruth	1	0	1	1	1	0	0	1	0	.60399997	.76700002	56.914547
9	Boston Baked Beans	0	0	0	1	0	0	0	0	1	.31299999	.51099998	23.417824
10	Candy Corn	0	0	0	0	0	0	0	0	1	.90600002	.32499999	38.010963
11	Caramel Apple Pops	0	1	1	0	0	0	0	0	0	.60399997	.32499999	34.517681
12	Charleston Chew	1	0	0	0	1	0	0	1	0	.60399997	.51099998	38.975037
13	Chewey Lemonhead Fruit Mix	0	1	0	0	0	0	0	0	1	.73199999	.51099998	36.017628

TIDY DATA [Wickham 2014]

How do rows and columns, match up with data fields, and observations?

In tidy data

- 1. Each field forms a column
- 2. Each observation forms a row
- 3. Each type of observational unit forms a table

Flexible starting point for analysis, transformation, and visualization

Data models are formal descriptions

Math: Sets with operations on them

Example: integers with + and \times operators

Conceptual models are mental constructions

Include semantics and support reasoning

Examples (data vs. conceptual)

1D floats vs. temperature

3D vector of floats vs. spatial location

14

DATA MODEL

How is data stored in the database?

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

CONCEPTUAL MODEL

Header	Description
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts, peanut butter or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice, wafers, or a cookie component?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bag or box?
sugarpercent	The percentile of sugar it falls under within the data set.
pricepercent	The unit price percentile compared to the rest of the set.
winpercent	The overall win percentage according to 269,000 matchups.

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

16

CONCEPTUAL MODEL

Header Description Does it contain chocolate? chocolate fruity Is it fruit flavored? Is there caramel in the candy? caramel Does it contain peanuts or almonds? peanutalmondy nougat Does it contain nougat? crispedricewafer Does it contain crisped rice or cookies? hard Is it a hard candy? Is it a candy bar? bar Is it one of many candies in a bad? pluribus The percentile of sugar (across dataset) sugarpercent The unit price percentile (across dataset) pricepercent

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

The overall win percentage in 269K contests

Domain specific understanding about the data

Supports analysis and reasoning

17

winpercent

DATA TYPES

N - Nominal (labels)

Fruits: Apples, oranges, ... Operations: =, ≠

O - Ordered

Quality of meat: Grade A, AA, AAA Operations: =, \neq , <, >

Q - Interval (location of zero arbitrary)

Dates: Jan, 19, 2016; Loc.: (LAT 33.98, LON -118.45) Like a geometric point. Cannot compare directly Only differences (i.e. intervals) may be compared Operations =, \neq , <, >, -

Q - Ratio (location of zero fixed)

Physical measurement: Length, Mass, ... Counts and amounts Like a geometric vector, origin is meaningful Operations: =, \neq , <, >, -, \div

18

NOMINAL, ORDINAL, QUANTITATIVE

Header	Description	
competitorname	Name of candy	N
chocolate	Does it contain chocolate?	N (maybe O)
fruity	Is it fruit flavored?	N (maybe O)
caramel	Is there cara <mark>mel in the candy?</mark>	N (maybe O)
peanutalmondy	Does it contain peanuts or almonds?	N (maybe O)
nougat	Does it contain nougat?	N (maybe O)
crispedricewafer	Does it contain crisped rice or cookies?	N (maybe O)
hard	Is it a hard candy?	N (maybe O)
bar	Is it a candy <mark>bar?</mark>	N (maybe O)
pluribus	Is it one of many candies in a bad?	N (maybe O)
sugarpercent	The percentile of sugar (across dataset)	Q-Ratio
pricepercent	The unit price percentile (across dataset)	Q-Ratio
winpercent	The overall win percentage in 269K contests	Q-Ratio

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

DATA TYPES

DIMENSIONS

Dimensions are often the **independent** variables

Dimensions contain **qualitative values that describe the data item** (such as names, dates, or geographical data)

MEASURES

Measures are often the **dependent** variables

Measures contain numeric, **quantitative values that you can measure**. Measures can be aggregated (sum, count, average, std. deviation).

[competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
	100 Grand	1	0	1	0	0	1	0	1	0	.73199999	.86000001	66.971725
:	3 Musketeers	1	0	0	0	1	0	0	1	0	.60399997	.51099998	67.602936
	One dime	0	0	0	0	0	0	0	0	0	.011	.116	32.261086

NOTE: Distinction is not strict. The same variable may be treated either way depending on the task

20

Header

DIMENSION OR MEASURE

competitorname	Name of candy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?

Description

pluribus Is it one of many candies in a bad?

sugarpercent The percentile of sugar (across dataset)

pricepercent The unit price percentile (across dataset)

winpercent The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

DIMENSION OR MEASURE

competitorname	Name of candy
	Traffic Of Carluy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

nttps://gitnub.com/fivetnirtyeignt/data/tree/master/candy-power-ranking

22

DIMENSION OR MEASURE

Header	Description
competitorname	Name of candy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

U.S. CENSUS DATA

People Count: # of people in group **Year:** 1850 – 2000 (every decade)

Age: 0 – 90+ **Sex:** Male, Female

Marital Status: Single, Married, Divorced, ...

2348 data points

	Α	В	С	D	Е	
1	year	age	marst	sex	people	
2	1850	0	0	1	1483789	
3	1850	0	0	2	1450376	
4	1850	5	0	1	1411067	
5	1850	5	0	2	1359668	
6	1850	10	0	1	1260099	
7	1850	10	0	2	1216114	
8	1850	15	0	1	1077133	
9	1850	15	0	2	1110619	
10	1850	20	0	1	1017281	
11	1850	20	0	2	1003841	
12	1850	25	0	1	862547	
13	1850	25	0	2	799482	
14	1850	30	0	1	730638	
15	1850	30	0	2	639636	
16	1850	35	0	1	588487	
17	1850	35	0	2	505012	
18	1850	40	0	1	475911	
19	1850	40	0	2	428185	
20	1850	45	0	1	384211	
21	1850	45	0	2	341254	
22	1850	50	0	1	321343	
23	1850	50	0	2	286580	
24	1850	55	0	1	194080	
25	1850	55	0	2	187208	
26	1050	60	0	- 1	174076	

24

CENSUS N, O, Q

People Count: Q-Ratio

Year: Q-Interval (maybe O)
Age: Q-Ratio (maybe O)

Sex: N
Marital Status: N

	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208
26	1050	60	0	4	174076

CENSUS DIM., MEAS.

People Count: Measure
Year: Dimension
Age: Depends!
Sex: Dimension
Marital Status: Dimension

4	Α	В	С	D	Е
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208
26	1050	60	0	4	174076

26

DATA TABLES & TRANSFORMATIONS

RELATIONAL ALGEBRA [Codd 1970] / SQL

Operations on data tables: table(s) in, table out

Projection (SELECT) – select a set of columns

Selection (WHERE) - filter rows

Sorting (ORDER BY) – order rows

Aggregation (GROUP BY, SUM, MIN, ...)

partition rows into groups and summarize

Combination (JOIN, UNION, ...)

integrate data from multiple tables

28

RELATIONAL ALGEBRA [Codd 1970] / SQL

Projection (SELECT) – select a set of columns

select day, stock

day	stock	price		day	stock
10/3	AMZN	957.10		10/3	AMZN
10/3	MSFT	74.26		10/3	MSFT
10/4	AMZN	965.45		10/4	AMZN
10/4	MSFT	74.69		10/4	MSFT

RELATIONAL ALGEBRA [Codd 1970] / SQL

Aggregation (GROUP BY, SUM, MIN, ...)

select stock min(price) group by stock

day	stock	price			
10/3	AMZN	957.10		stock	min(price)
10/3	MSFT	74.26	→	AMZN	957.10
10/4	AMZN	965.45		MSFT	74.26
10/4	MSFT	74.69			

32

RELATIONAL ALGEBRA [Codd 1970] / SQL

Combination (JOIN) multiple tables together

day	stock	price		day	stock	price	min
10/3	AMZN	957.10	→	10/3	AMZN	957.10	957.10
10/3	MSFT	74.26		10/3	MSFT	74.26	74.26
10/4	AMZN	965.45		10/4	AMZN	965.45	957.10
10/4	MSFT	74.69		10/4	MSFT	74.69	74.26

stock	min
AMZN	957.10
MSFT	74.26

select t.day,t.stock,t.price,a.min
from table as t, aggregate as a
where t.stock = a.stock

Original

YEAR	AGE	MARST	SEX	PEOPLE
1850	0	0	1	1,483,789
1850	5	0	1	1,411,067
1860	0	0	1	2,120,846
1860	5	0	1	1,804,467

Pivoted or Cross-Tabulation

AGE	MARST	SEX	1850	1860	
0	0	1	1,483,789	2,120,846	
5	0	1	1,411,067	1,804,467	

Which format might we prefer? Why?

38

ANNOUNCEMENTS

CLASS PARTICIPATION REQUIREMENTS

Complete required readings and notebooks before class

Attend class and be a part of the in-class discussion

Post at least 1 discussion substantive comment/question per week

Due by 8pm the following Sunday 1 free pass for the quarter

Class home page

https://magrawala.github.io/cs448b-fa23/

41

READING/NOTEBOOK/LECTURE RESPONSES

Good responses typically exhibit one or more

Critiques of arguments made in the papers/lectures **Analysis** of implications or future directions for ideas in readings/lectures **Insightful questions** about the readings/lectures

Responses should not be summaries

Should be substantive (1-2 paragraphs is typical)

OBSERVABLE NOTEBOOKS / VEGA-LITE

Vega-Lite is a *declarative* API for programming visualizations

Do the exercises (fork notebook)

Lec. on Wed 10/4 will assume you have done the 1st three notebooks

43

ASSIGNMENT 1: VISUALIZATION DESIGN

Due TODAY

Design a static visualization for a data set

You must choose the message you want to convey. What question(s) do you want to answer? What insight do you want to communicate?

Data: Stanford Undergraduate Majors

Stanford University publishes a variety of datasets through the Stanford Institutional Rsearch & Decision Support website. They have published a data table containing information about the number of Stanford undergraduates obtaining a Bachelor's degree in 75 different fields of study from 2003 to 2022. We have filtered and wrangled this data to the top 10 fields of study by cummulative degrees conferred over the time period to produce a dataset with the following attributes:

- Year: Academic year between 2003 and 2022. (Academic years run July-June so Year=2003 covers July 2002 to June 2003.)
- FieldOfStudy: Field in which degree was obtained.
- Count: Number of students earning a Bachelor's degree.

The extracted dataset is available in csv format: TopFieldsStanfordBachelors.csv

IMAGE

CODING INFORMATION IN POSITION

- 1. A, B, C are distinguishable
- 2. Three points are colinear: B between A and C
- 3. BC is twice as long as AB
- : Encode quantitative variables

"Resemblance, order and proportional are the three signfields in graphics." - Bertin

CODING INFORMATION IN COLOR Value is perceived as ordered ∴ Encode ordinal variables (O) ∴ Encode continuous variables (Q) [not as well] Hue is normally perceived as unordered ∴ Encode nominal variables (N) using color

BERTIN'S "LEVELS OF ORGANIZATION" N Nominal Ν Q **Position** 0 O Ordered Q Quantitative 0 Q Ν Size **Value** Ν 0 Note: Q ⊂ O ⊂ N Q **Texture** Ν 0 Color Ν **Orientation** N N Shape

VISUAL ENCODING

52

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect data → size (height)

ENCODINGS: MAP DATA to MARK ATTRIBUTES

54

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect data → size (height)

mark: points $data_1 \rightarrow x$ -pos $data_2 \rightarrow y$ -pos

mark: points data₁ \rightarrow x-pos

 $data_2 \rightarrow y-pos$

 $\mathsf{data_3} \boldsymbol{\to} \mathsf{color}$

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect data → size (height)

mark: points $data_1 \rightarrow x$ -pos $data_2 \rightarrow y$ -pos

mark: points data₁ \rightarrow x-pos data₂ \rightarrow y-pos data₃ \rightarrow color

mark: points data₁ \rightarrow x-pos data₂ \rightarrow y-pos data₃ \rightarrow color data₄ \rightarrow size

56

DECONSTRUCTIONS

temperature (Q) → y-position

tongitude (Q), time (O) → x-position

temperature (Q) x conjugate diagrams a digner of diagram a digner of diagrams a diagram a digner of diagrams a digner of diagrams a diagram a digner of diagrams a digner of diagrams a diagram a digner of diagrams a digner of diagrams a diagram a digner of diagrams a diagram a diagram a digner of diagrams a diagram a digner of diagrams a diagram a

COMBINATORICS OF ENCODINGS

Challenge:

Assume k visual attributes/channels and n data fields Pick the best encoding from the exponential number of possibilities $(n+1)^k$

70

PRINCIPLES

Challenge

Assume k visual attributes/channels and n data fields Pick the best encoding from the exponential number of possibilities $(n+1)^k$

Principle of Consistency

Properties of image (visual variables) should match properties of data

Principle of Importance Ordering

Encode most important information in the most effective way

EXPRESSIVENESS CRITERIA [Mackinlay 1986]

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e., the visualizations) in the language express *all* the facts in the set of data, and *only* the facts in the data.

72

CANNOT EXPRESS ALL THE FACTS

Horizontal dot plot

A one-to-many (1 \rightarrow N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

EXPRESSES FACTS NOT IN THE DATA

Length is interpreted as encoding a quantitative value

Fig. 11. Incorrect use of a bar chart for the *Nation* relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the *Nation* relation.

74

EFFECTIVENESS CRITERIA [Mackinlay 1986]

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily *perceived* than the information in the other visualization.

Subject of the Perception Lecture

AUTOMATIC CHART DESIGN [Mackinlay 1986]

APT – "A Presentation Tool"

User formally specifies data model and type

Input: list of data variables ordered by importance

APT searches over the design space

Tests expressiveness of each visual encoding (rule-based) Generates encodings that pass test Rank by perceptual effectiveness criteria

Outputs most effective visualization

LIMITATIONS

Does not cover many visualization techniques

Networks, maps, diagrams
Also, 3D, animation, illustration, ...

Does not consider interaction

Does not consider semantics or conventions

Assumes single visualization as output

81

SUMMARY

Formal specification

Data model: tidy data, N,O,Q types

Image model: marks, visual attributes/channels Encodings map data to mark attributes/channels

Choose expressive and effective encodings

Rule-based test of expressiveness

Perceptual effectiveness rankings