DATA \& IMAGE MODELS

CS 448B | Fall 2023

MANEESH AGRAWALA

1

The big picture

task
questions, goals, assumptions

data
physical data type
conceptual data type
domain
image
graphical marks
visual attrs/channels
processing
algorithms
metadata
semantics
conventions
$\xrightarrow[\begin{array}{c}\text { mapping } \\ \text { visual encoding } \\ \text { algorithms }\end{array}]{\substack{\text { image } \\ \text { graphical marks } \\ \text { visual attrs/channels }}}$

7

Learning Objectives

1. Identify properties of data and images

TODAY
2. Decide how to encode data using visual attributes/channels
3. Define concepts of expressiveness and effectiveness
4. Develop automated chart design algorithm

8

DATA

9

10

DATA TABLE

Halloween Candy Power Ranking Dataset

1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
2	100 Grand	1	0	1	0	0	1	0	1	0	. 73199999	. 86000001	66.971725
3	3 Musketeers	1	0	0	0	1	0	0	1	0	. 60399997	. 51099998	67.602936
4	One dime	0	0	0	0	0	0	0	0	0	. 011	. 116	32.261086
5	One quarter	0	0	0	0	0	0	0	0	0	. 011	. 51099998	46.116505
6	Air Heads	0	1	0	0	0	0	0	0	0	.90600002	. 51099998	52.341465
7	Almond Joy	1	0	0	1	0	0	0	1	0	. 465	. 76700002	50.347546
8	Baby Ruth	1	0	1	1	1	0	0	1	0	. 60399997	. 76700002	56.914547
9	Boston Baked Beans	0	0	0	1	0	0	0	0	1	. 31299999	. 51099998	23.417824
18	Candy Com	0	0	0	0	0	0	0	0	1	. 90600002	. 32499999	38.010963
11	Caramel Apple Pops	0	1	1	0	0	0	0	0	0	. 60399997	32499999	34.517681
12	Charleston Chew	1	0	0	0	1	0	0	1	0	. 60399997	. 51099998	38.975037
13	Chewey Lemonhead Fruit Mix	0	1	0	0	0	0	0	0	1	. 73199999	. 51099998	36.017628

12

TIDY DATA [Wickham 2014]

How do rows and columns, match up with data fields, and observations?

In tidy data

1. Each field forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table

Flexible starting point for analysis, transformation, and visualization

Data models are formal descriptions

Math: Sets with operations on them
Example: integers with + and \times operators

Conceptual models are mental constructions

Include semantics and support reasoning

Examples (data vs. conceptual)

1D floats vs. temperature
3D vector of floats vs. spatial location

DATA MODEL

1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispecricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
2	100 Grand	1	0	1	0	0	1	0	1	0	. 73199999	. 86000001	66.971725
3	3 Musketeers	1	0	0	0	1	0	0	1	0	. 60399997	. 51099998	67.602936
4	One dime	0	0	0	0	0	0	0	0	0	. 011	. 116	32.261086
5	One quarter	0	0	0	0	0	0	0	0	0	. 011	. 51099998	46.116505
6	Air Heads	0	1	0	0	0	0	0	0	0	. 90600002	. 51099998	52.341465
7	Almond Joy	1	0	0	1	0	0	0	1	0	. 465	. 76700002	50.347546
8	Baby Ruth	1	0	1	1	1	0	0	1	0	. 60399997	. 76700002	56.914547
9	Boston Baked Beans	0	0	0	1	0	0	0	0	1	. 31299999	. 51099998	23.417824
18	Candy Com	0	0	0	0	0	0	0	0	1	. 90600002	. 32499999	38.010963
11	Caramel Apple Pops	0	1	1	0	0	0	0	0	0	. 60399997	. 32499999	34.517681
12	Charleston Chew	1	0	0	0	1	0	0	1	0	. 60399997	. 51099998	38.975037
13	Chewey Lemonhead Fruit Mix	0	1	0	0	0	0	0	0	1	. 73199999	. 51099998	36.017628
	string	bool		ol bool	float	float	float						

CONCEPTUAL MODEL

Header	Description
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts, peanut butter or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice, wafers, or a cookie component?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bag or box?
sugarpercent	The percentile of sugar it falls under within the data set.
pricepercent	The unit price percentile compared to the rest of the set.
winpercent	The overall win percentage according to 269,000 matchups.

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking
16

CONCEPTUAL MODEL

Header

chocolate
fruity Description
Does it contain chocolate?
caramel
peanutalmond

> nougat
crispedricewaf
hard
bar
pluribus
sugarpercent
pricepercent
winpercent

Is it fruit flavored?
Is there caramel in the candy?
Does it contain peanuts or almonds? Does it contain nougat?
Does it contain crisped rice or cookies?
Is it a hard candy?
Is it a candy bar?
Is it one of many candies in a bad?
The percentile of sugar (across dataset)
The unit price percentile (across dataset)
The overall win percentage in 269 K contests
https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

18

NOMINAL, ORDINAL, QUANTITATIVE

| Header | Description | |
| :--- | :--- | :--- | :--- |
| competitorname | Name of candy | N |
| chocolate | Does it contain chocolate? | N (maybe O) |
| fruity | Is it fruit flavored? | N (maybe O) |
| caramel | Is there caramel in the candy? | N (maybe O) |
| peanutalmondy | Does it contain peanuts or almonds? | N (maybe O) |
| nougat | Does it contain nougat? | N (maybe O) |
| crispedricewafer | Does it contain crisped rice or cookies? | N (maybe O) |
| hard | Is it a hard candy? | N (maybe O) |
| bar | Is it a candy bar? | N (maybe O) |
| pluribus | Is it one of many candies in a bad? | N (maybe O) |
| sugarpercent | The percentile of sugar (across dataset) | Q -Ratio |
| pricepercent | The unit price percentile (across dataset) | Q -Ratio |
| winpercent | The overall win percentage in 269K contests | Q -Ratio |

[^0]19

DATA TYPES

DIMENSIONS

Dimensions are often the independent variables

Dimensions contain qualitative values that describe the data item (such as names, dates, or geographical data)

MEASURES

Measures are often the dependent variables

Measures contain numeric, quantitative values that you can measure. Measures can be aggregated (sum, count, average, std. deviation).

1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
2	100 Grand	1	0	1	0	0	1	0	1	0	. 73199999	. 86000001	66.971725
3	3 Musketeers	1	0	0	0	1	0	0	1	0	. 60399997	. 51099998	67.602936
4	One dime	0	0	0	0	0	0	0	0	0	. 011	. 116	32.261086

NOTE: Distinction is not strict. The same variable may be treated either way depending on the task

DIMENSION OR MEASURE

Header competitorname chocolate	Description fruity
Name of candy	
caramel	Does it contain chocolate?
peanutalmondy	Is it fruit flavored?
nougat	Is there caramel in the candy?
crispedricewafer	Does it contain peanuts or almonds?
hard	Does it contain crisped rice or cookies?
bar	Is a hard candy?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

DIMENSION OR MEASURE

Header	Description
competitorname	Name of candy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

22

DIMENSION OR MEASURE

Header	Description
competitorname	Name of candy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

U.S. CENSUS DATA

People Count: \# of people in group
Year: 1850-2000 (every decade)
Age: 0-90+

Sex: Male, Female
Marital Status: Single, Married, Divorced, ...

2348 data points

,	A	B	C	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208

24

CENSUS N, \mathbf{O}, \mathbf{Q}

People Count: Q-Ratio
Year: \quad Q-Interval (maybe O)
Age: \quad Q-Ratio (maybe O)
Sex: N
Marital Status: N

| | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | year | age | marst | sex | people |
| 2 | 1850 | 0 | 0 | 1 | 1483789 |
| 3 | 1850 | 0 | 0 | 2 | 1450376 |
| 4 | 1850 | 5 | 0 | 1 | 1411067 |
| 5 | 1850 | 5 | 0 | 2 | 1359668 |
| 6 | 1850 | 10 | 0 | 1 | 1260099 |
| 7 | 1850 | 10 | 0 | 2 | 1216114 |
| 8 | 1850 | 15 | 0 | 1 | 1077133 |
| 9 | 1850 | 15 | 0 | 2 | 1110619 |
| 10 | 1850 | 20 | 0 | 1 | 1017281 |
| 11 | 1850 | 20 | 0 | 2 | 1003841 |
| 12 | 1850 | 25 | 0 | 1 | 862547 |
| 13 | 1850 | 25 | 0 | 2 | 799482 |
| 14 | 1850 | 30 | 0 | 1 | 730638 |
| 15 | 1850 | 30 | 0 | 2 | 639636 |
| 16 | 1850 | 35 | 0 | 1 | 588487 |
| 17 | 1850 | 35 | 0 | 2 | 505012 |
| 18 | 1850 | 40 | 0 | 1 | 475911 |
| 19 | 1850 | 40 | 0 | 2 | 428185 |
| 20 | 1850 | 45 | 0 | 1 | 384211 |
| 21 | 1850 | 45 | 0 | 2 | 341254 |
| 22 | 1850 | 50 | 0 | 1 | 321343 |
| 23 | 1850 | 50 | 0 | 2 | 286580 |
| 24 | 1850 | 55 | 0 | 1 | 194080 |
| 25 | 1850 | 55 | 0 | 2 | 187208 |
| 26 | 1050 | 20 | 0 | 1 | 17407ε |
| | | | | | |

25

CENSUS DIM., MEAS.

People Count: Measure
Year: Dimension
Age: Depends!
Sex: Dimension
Marital Status: Dimension

$\underline{1}$	A	B	C	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208

26

RELATIONAL ALGEBRA [Codd 1970] / SQL

Operations on data tables: table(s) in, table out

Projection (SELECT) - select a set of columns
Selection (WHERE) - filter rows
Sorting (ORDER BY) - order rows
Aggregation (GROUP BY, SUM, MIN, ...)
partition rows into groups and summarize

Combination (JOIN, UNION, ...)
integrate data from multiple tables

RELATIONAL ALGEBRA [codd 1970] / SQL

Projection (SELECT) - select a set of columns

```
    select day, stock
```

day	stock	price
$10 / 3$	AMZN	957.10
$10 / 3$	MSFT	74.26
$10 / 4$	AMZN	965.45
$10 / 4$	MSFT	74.69

\longrightarrow| day | stock |
| :---: | :---: |
| $10 / 3$ | AMZN |
| $10 / 3$ | MSFT |
| $10 / 4$ | AMZN |
| $10 / 4$ | MSFT |

RELATIONAL ALGEBRA [codd 1970] / SQL

Selection (WHERE) - filter rows

```
select * where price > 100
```

day	stock	price
$10 / 3$	AMZN	957.10
$10 / 3$	MSFT	74.26
$10 / 4$	AMZN	965.45
$10 / 4$	MSFT	74.69

\rightarrow| day | stock | price |
| :---: | :---: | :---: |
| $10 / 3$ | AMZN | 957.10 |
| $10 / 4$ | AMZN | 965.45 |

RELATIONAL ALGEBRA [Codd 1970] / SQL

Sorting (ORDER BY) - order records

```
select * order by stock
```

day	stock	price				
$10 / 3$	AMZN	957.10				
$10 / 3$	MSFT	74.26				
$10 / 4$	AMZN	965.45				
$10 / 4$	MSFT	74.69	\longrightarrow	day	stock	price
:---:	:---:	:---:				
$10 / 3$	AMZN	957.10				
$10 / 4$	AMZN	965.45				
$10 / 3$	MSFT	74.26				
$10 / 4$	MSFT	74.69				

RELATIONAL ALGEBRA [codd 1970] / SQL

Aggregation (GROUP BY, SUM, MIN, ...)
select stock min(price) group by stock

day	stock	price
$10 / 3$	AMZN	957.10
$10 / 3$	MSFT	74.26
$10 / 4$	AMZN	965.45
$10 / 4$	MSFT	74.69

\rightarrow| stock | min(price) |
| :---: | ---: |
| AMZN | 957.10 |
| MSFT | 74.26 |

RELATIONAL ALGBBRA [codd 1970] / SQL

Combination (JOIN) multiple tables together

day	stock	price					
$10 / 3$	AMZN	957.10					
$10 / 3$	MSFT	74.26					
$10 / 4$	AMZN	965.45					
$10 / 4$	MSFT	74.69	\rightarrow	day	stock	price	min
:---:	:---:	---:	---:				
$10 / 3$	AMZN	957.10	957.10				
$10 / 3$	MSFT	74.26	74.26				
$10 / 4$	AMZN	965.45	957.10				
$10 / 4$	MSFT	74.69	74.26				

stock	\min
AMZN	957.10
MSFT	74.26

select t.day, t.stock, t.price, a.min from table as t, aggregate as a where t.stock = a.stock

Original					
YEAR	AGE	MARST	SEX	PEO	
1850	0	0	1	1,48	3,789
1850	5	0	1	1,41	1,067
1860	0	0	1	2,120	1,846
1860	5	0	1	1,80	4,467
Pivoted or Cross-Tabulation					
AGE	MARST	SEX	1850	1860	
0	0		1,483,789	2,120,846	
	0		1,411,067	1,804,467	
Which format might we prefer? Why?					

38

ANNOUNCEMENTS

CLASS PARTICIPATION REQUIREMENTS

Complete required readings and notebooks before class
Attend class and be a part of the in-class discussion
Post at least 1 discussion substantive comment/question per week
Due by 8pm the following Sunday
1 free pass for the quarter
https://magrawala.github.io/cs448b-fa23/

READING/NOTEBOOK/LECTURE RESPONSES

Good responses typically exhibit one or more

Critiques of arguments made in the papers/lectures
Analysis of implications or future directions for ideas in readings/lectures Insightful questions about the readings/lectures

Responses should not be summaries

Should be substantive (1-2 paragraphs is typical)

OBSERVABLE NOTEBOOKS / VEGA-LITE

43

ASSIGNMENT 1: VISUALIZATION DESIGN

Due TODAY

Design a static visualization for a data set

You must choose the message you want to convey. What question(s) do you want to answer? What insight do you want to communicate?

Data: Stanford Undergraduate Majors
Stanford University publishes a variety of datasets through the Stanford Institutional Rsearch \& Decision Support website. They have published a data table containing information about the number of Stanford undergraduates obtaining a Bachelor's degree in 75 different fields of study from 2003 to 2022. We have filtered and wrangled this data to the top 10 fields of study by cummulative degrees conferred over the time period to produce a dataset with the following attributes:

- Year: Academic year between 2003 and 2022. (Academic years run July-June so Year=2003 covers July 2002 to June 2003.)
- FieldOfStudy: Field in which degree was obtained.
- Count: Number of students earning a Bachelor's degree.

The extracted dataset is available in csv format: TopFieldsStanfordBachelors.csv

ASSIGNMENT 2: EXP. DATA ANALYSIS

Due 10/16 11:30am

Use Tableau or Vega-Lite to formulate \& answer data questions

First steps
Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
See different views of data
Refine questions
Author a report
Screenshots of most insightful views (8+) Include titles and captions for each view

45

46

MARKS \& VISUAL ATTRs

Marks: geometric primitives

Visual Attributes: control mark appearance

47

CODING INFORMATION IN POSITION

1. A, B, C are distinguishable
2. Three points are colinear: B between A and C
3. $B C$ is twice as long as $A B$
\therefore Encode quantitative variables
"Resemblance, order and proportional are the three signfields in graphics." - Bertin

49

CODING INFORMATION IN COLOR

Value is perceived as ordered
\therefore Encode ordinal variables (O)

\therefore Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered
\therefore Encode nominal variables (N) using color

BERTIN'S "LEVELS OF ORGANIZATION"

Position	N	0	Q	N Nominal O Ordered
Size	N	0	Q	Q Quantitative
Value	\mathbf{N}	0	Q	Note: $\mathbf{Q} \subset \mathbf{O} \subset \mathbf{N}$
Texture	\mathbf{N}	0		
Color	N			
Orientation	N			
Shape	N			

VISUAL ENCODING

mark: rect
data \rightarrow size (height)

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect
data \rightarrow size (height)

mark: points
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow \mathrm{y}$-pos

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: points data $_{1} \rightarrow$ x-pos data $_{2} \rightarrow y$-pos

mark: points data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow$ y-pos
data $_{3} \rightarrow$ color

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect
data \rightarrow size (height)

mark: points
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow \mathrm{y}$-pos

mark: points
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow$ y-pos
data $_{3} \rightarrow$ color

mark: points data $_{1} \rightarrow$ x-pos data $_{2} \rightarrow$ y-pos data $_{3} \rightarrow$ color data $_{4} \rightarrow$ size

DECONSTRUCTIONS

60

61

62

MINARD's MARCH on MOSCOW

63

MARK COMPOSITION

65

MINARD's MARCH on MOSCOW

68

COMBINATORICS OF ENCODINGS

Challenge:
Assume k visual attributes/channels and n data fields
Pick the best encoding from the exponential number of possibilities $(n+1)^{k}$

PRINCIPLES

Challenge

Assume k visual attributes/channels and n data fields
Pick the best encoding from the exponential number of possibilities $(n+1)^{k}$
Principle of Consistency
Properties of image (visual variables) should match properties of data

Principle of Importance Ordering

Encode most important information in the most effective way

EXPRESSIVENESS CRITERIA [Mackinlay 1986]

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e., the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

CANNOT EXPRESS ALL THE FACTS

Horizontal dot plot

A one-to-many $(1 \rightarrow \mathrm{~N})$ relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

EXPRESSES FACTS NOT IN THE DATA

Length is interpreted as encoding a quantitative value

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

EFFECTIVENESS CRITERIA [Mackinlay 1986]

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of the Perception Lecture

MACKINLAY'S RANKING

Conjectured effectiveness of encodings by data type

AUTOMATIC CHART DESIGN [Mackinlay 1986]

APT - "A Presentation Tool"

User formally specifies data model and type
Input: list of data variables ordered by importance

APT searches over the design space
Tests expressiveness of each visual encoding (rule-based)
Generates encodings that pass test
Rank by perceptual effectiveness criteria
Outputs most effective visualization

79

APT [Mackinlay 1986]

Automatically generated chart for cars data

Cars Data

1. Price (Q)
2. Mileage (Q)
3. Weight (Q)
4. Repair (Q)

LIMITATIONS

Does not cover many visualization techniques
Networks, maps, diagrams
Also, 3D, animation, illustration, ...
Does not consider interaction
Does not consider semantics or conventions
Assumes single visualization as output

SUMMARY

Formal specification

Data model: tidy data, N,O,Q types
Image model: marks, visual attributes/channels
Encodings map data to mark attributes/channels

Choose expressive and effective encodings
Rule-based test of expressiveness
Perceptual effectiveness rankings

[^0]: https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

